J Appl Biomed 20:70-79, 2022 | DOI: 10.32725/jab.2022.008
Heart rate dynamics in the prediction of coronary artery disease and myocardial infarction using artificial neural network and support vector machine
- Birla Institute of Technology, Department of Bioengineering and Biotechnology, Mesra, Ranchi, Jharkhand, India
Background: Atherosclerosis leads to coronary artery disease (CAD) and myocardial infarction (MI), a major cause of morbidity and mortality worldwide. The computer-aided prognosis of atherosclerotic events with the electrocardiogram (ECG) derived heart rate variability (HRV) can be a robust method in the prognosis of atherosclerosis events.
Methods: A total of 70 male subjects aged 55 ± 5 years participated in the study. The lead-II ECG was recorded and sampled at 200 Hz. The tachogram was obtained from the ECG signal and used to extract twenty-five HRV features. The one-way Analysis of variance (ANOVA) test was performed to find the significant differences between the CAD, MI, and control subjects. Features were used in the training and testing of a two-class artificial neural network (ANN) and support vector machine (SVM).
Results: The obtained results revealed depressed HRV under atherosclerosis. Accuracy of 100% was obtained in classifying CAD and MI subjects from the controls using ANN. Accuracy was 99.6% with SVM, and in the classification of CAD from MI subjects using SVM and ANN, 99.3% and 99.0% accuracy was obtained respectively.
Conclusions: Depressed HRV has been suggested to be a marker in the identification of atherosclerotic events. The good accuracy observed in classification between control, CAD, and MI subjects, revealed it to be a non-invasive cost-effective approach in the prognosis of atherosclerotic events.
Keywords: Artificial neural network; Atherosclerosis; Coronary artery disease; Heart rate variability; Myocardial infarction; Support vector machine
Conflicts of interest:
The authors have no conflict of interests to declare.
Received: July 20, 2021; Revised: May 10, 2022; Accepted: June 16, 2022; Published: June 21, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdelnabi MH (2019). Cardiovascular clinical implications of heart rate variability. Int J Cardiovasc Acad 5: 37-41. DOI: 10.4103/IJCA.IJCA_36_18.
Go to original source...
- Acharya UR, Faust O, Sree V, Swapna G, Martis RJ, Kadri NA, et al. (2014). Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput Methods Programs Biomed 113: 55-68. DOI: 10.1016/j.cmpb.2013.08.017.
Go to original source...
Go to PubMed...
- Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri, JS (2006). Heart rate variability: a review. Med Biol Eng Comput 44: 1031-1051. DOI: 10.1007/s11517-006-0119-0.
Go to original source...
Go to PubMed...
- Acharya UR, Sudarshan VK, Koh JE, Martis RJ, Tan JH, Oh SL (2017). Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed Signal Process Control 31: 31-43. DOI: 10.1016/j.bspc.2016.07.003.
Go to original source...
- Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK (2020). Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybern Biomed Eng 40: 1002-1009. DOI: 10.1016/j.bbe.2020.05.001.
Go to original source...
- Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK (2021). Heart rate variability time domain features in automated prediction of diabetes in rat. Phys Eng Sci Med 44: 45-52. DOI: 10.1007/s13246-020-00950-8.
Go to original source...
Go to PubMed...
- Aggarwal Y, Singh N, Sinha RK (2012). Electrooculogram based study to assess the effects of prolonged eye fixation on autonomic responses and its possible implication in man-machine interface. Health Technol 2: 89-94. DOI: 10.1007/s12553-011-0012-1.
Go to original source...
- Baratloo A, Hosseini M, Negida A, El Ashal G (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran) 3: 48-49.
Go to PubMed...
- Behbahani S, Dabanloo NJ, Nasrabadi AM (2012). Ictal heart rate variability assessment with focus on secondary generalized and complex partial epileptic seizures. Adv Biores 4: 50-58.
- Bento M, Souza R, Salluzzi M, Rittner L, Zhang Y, Frayne R (2019). Automatic identification of atherosclerosis subjects ina heterogeneous MR brain imaging data set. Magn Reason Imaging 62: 18-27. DOI: 10.1016/j.mri.2019.06.007.
Go to original source...
Go to PubMed...
- Buccelletti E, Gilardi EM, Scaini E, Galiuto LE, Persiani RO, Biondi AL, et al. (2009). Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci 13: 299-307.
Go to PubMed...
- Carney RM, Blumenthal JA, Stein PK, Watkins L, Catellier D, Berkman LF, et al. (2001). Depression, heart rate variability, and acute myocardial infarction. Circulation 104: 2024-2028. DOI: 10.1161/hc4201.097834.
Go to original source...
Go to PubMed...
- Carney RM, Rich MW, TeVelde A, Saini J, Clark K, Freedland KE (1988). The relationship between heart rate, heart rate variability and depression in patients with coronary artery disease. J Psychosom Res 32: 159-164. DOI: 10.1016/0022-3999(88)90050.
Go to original source...
Go to PubMed...
- Dolatabadi AD, Khadem SE, Asl BM (2017). Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput Methods Programs Biomed 138: 117-126. DOI: 10.1016/j.cmpb.2016.10.011.
Go to original source...
Go to PubMed...
- Franca da Silva AK, Destro Christofaro DG, Manata Vanzella L, Marques Vanderlei F, Lopez Laurino MJ, Vanderlei M (2019). Relationship of the aggregation of cardiovascular risk factors in the parasympathetic modulation of young people with type 1 diabetes. Medicina (Kaunas) 55: 534. DOI: 10.3390/medicina55090534.
Go to original source...
Go to PubMed...
- Geovanini GR, Libby P (2018). Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 132: 1243-1252. DOI: 10.1042/CS20180306.
Go to original source...
Go to PubMed...
- Goldstein DS, Bentho O, Park MY, Sharabi Y (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96: 1255-1261. DOI: 10.1113/expphysiol.2010.056259.
Go to original source...
Go to PubMed...
- Guan L, Collet J-P, Mazowita G, Claydon VE (2018). Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Front Neurol 9: 90. DOI: 10.3389/fneur.2018.00090.
Go to original source...
Go to PubMed...
- Heart rate variability: standards of measurement, physiological interpretation and clinical use (1996). Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93: 1043-1065.
- Heusch G (2011). The paradox of α-adrenergic coronary vasoconstriction revisited. J Mol Cell Cardiol 51: 16-23. DOI: 10.1016/j.yjmcc.2011.03.007.
Go to original source...
Go to PubMed...
- Huikuri HV, Jokinen V, Syvänne M, Nieminen MS, Airaksinen KJ, Ikäheimo MJ, et al. (1999). Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 19: 1979-1985. DOI: 10.1161/01.ATV.19.8.1979.
Go to original source...
Go to PubMed...
- Karimi M, Amirfattahi R, Sadri S, Marvasti SA (2005). Noninvasive detection and classification of coronary artery occlusions using wavelet analysis of heart sounds with neural networks. The 3rd IEE International Seminar on Medical Applications of Signal Processing. 2005: 117-120. DOI: 10.1049/ic:20050342.
Go to original source...
- Kleiger RE, Miller JP, BiggerJT, Jr., Moss AJ (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59: 256-262. DOI: 10.1016/0002-9149(87)90795-8.
Go to original source...
Go to PubMed...
- Kumar M, Pachori RB, Acharya UR (2017). Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed Signal Process Control 31: 301-308. DOI: 10.1016/j.bspc.2016.08.018.
Go to original source...
- Laitio T, Jalonen J, Kuusela T, Scheinin H (2007). The role of heart rate variability in risk stratification for adverse postoperative cardiac events. Anesth Analg 105: 1548-1560. DOI: 10.1213/01.ane.0000287654.49358.3a.
Go to original source...
Go to PubMed...
- Lanfranchi PA, Somers VK (2002). Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol 283: R815-R826. DOI: 10.1152/ajpregu.00051.2002.
Go to original source...
Go to PubMed...
- Lee HG, Kim WS, Noh KY, Shin JH, Yun U, Ryu KH (2009). Coronary artery disease prediction method using linear and nonlinear feature of heart rate variability in three recumbent postures.
- Inform Syst Front 11: 419-431. DOI: 10.1007/s10796-009- 9155-2.
Go to original source...
- Lee HG, Noh KY, Ryu KH (2008). A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness. International Conference on Biomedical Engineering and Informatics 1: 200-206. DOI: 10.1109/BMEI.2008.189.
Go to original source...
- Lin IM, Weng CY, Lin TK, Lin CL (2015). The relationship between expressive/suppressive hostility behavior and cardiac autonomic activations in patients with coronary artery disease. Acta Cardiol Sin 31: 308-316. DOI: 10.6515%2FACS20141027.
Go to PubMed...
- Maheshwari A, Norby FL, Soliman EZ, Adabag S, Whitsel EA, Alonso A, Chen LY (2016). Low Heart Rate Variability in a 2-Minute Electrocardiogram Recording Is Associated with an Increased Risk of Sudden Cardiac Death in the General Population: The Atherosclerosis Risk in Communities Study. Plos One 11: e0161648. DOI: 10.1371/journal.pone.0161648.
Go to original source...
Go to PubMed...
- Manfrini O, Pizzi C, Viecca M, Bugiardini R (2008). Abnormalities of cardiac autonomic nervous activity correlate with expansive coronary artery remodelling. Atherosclerosis 197: 83-189. DOI: 10.1016/j.atherosclerosis.2007.03.013.
Go to original source...
Go to PubMed...
- Ni H, Cho S, Mankoff J, Yang J (2018). Automated recognition of hypertension through overnight continuous HRV monitoring. J Ambient Intell Humaniz Comput 9: 2011-2023. DOI: 10.1007/s12652-017-0471-y.
Go to original source...
- Orellana JN, de la Cruz Torres B, Cachadiña ES, de Hoyo M, Dominguez Cobo S (2015). Two new indexes for the assessment of autonomic balance in elite soccer players. Int J Sports Physiol Perform 10: 452-457. DOI: 10.1123/ijspp.2014-0235.
Go to original source...
Go to PubMed...
- Poddar MG, Birajdar AC, Virmani J (2019). Automated classification of hypertension and Coronary artery disease patients by PNN, KNN, and SVM classifiers using HRV Analysis. Machine Learning in Bio-Signal Analysis and Diagnostic Imaging 99-125. DOI: 10.1016/B978-0-12-816086-2.00005-9.
Go to original source...
- Quintana M, Storck N, Lindblad LE, Lindvall K, Ericson M (1997). Heart rate variability as a means of assessing prognosis after acute myocardial infarction: A 3-year follow-up study. Eur Heart J 18: 789-797. DOI: 10.1093/oxfordjournals.eurheartj.a015344.
Go to original source...
Go to PubMed...
- Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res 21: 133-141. DOI: 10.1007/s10286-010-0098-y.
Go to original source...
Go to PubMed...
- Rupprecht S, Finn S, Hoyer D, Guenther A, Witte OW, Schultze T, Schwab M (2020). Association between systemic inflammation, carotid arteriosclerosis, and autonomic dysfunction. Transl Stroke Res 11: 50-59. DOI: 10.1007/s12975-019-00706-x.
Go to original source...
Go to PubMed...
- Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Hansen JF (2006). C-reactive protein, heart rate variability and prognosis in community subjects with no apparent heart disease. J Inter Med 260: 377-387. DOI: 10.1111/j.1365-2796.2006.01701.x.
Go to original source...
Go to PubMed...
- Schlenker J, Nedělka T, Riedlbauchová L, Socha V, Hána K, Kutílek P (2014). Recurrence quantification analysis: a promising method for data evaluation in medicine. Eur J Biomed Inform 10: en35-en40. DOI: 10.24105/ejbi.2014.10.1.7.
Go to original source...
- Shaffer F, Ginsberg JP (2017). An overview of heart rate variability metrics and norms. Front Public Health 5: 46. DOI: 10.3389/fpubh.2017.00258.
Go to original source...
Go to PubMed...
- Shah PK (2019). Inflammation, infection and atherosclerosis. Trends Cardiovasc Med 29: 468-472. DOI: 10.1016/j.tcm.2019.01.004.
Go to original source...
Go to PubMed...
- Shahnawaz MB, Dawood H (2021). An Effective Deep Learning Model for Automated Detection of Myocardial Infarction Based on Ultrashort-Term Heart Rate Variability Analysis. Math Probl Eng, 13 p. DOI: 10.1155/2021/6455053.
Go to original source...
- Sharma M, Acharya UR (2019). A new method to identify coronary artery disease with ECG signals and time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit Lett 125: 235-240. DOI: 10.1016/j.patrec.2019.04.014.
Go to original source...
- Shi M, Zhan C, He H, Jin Y, Wu R, Sun Y, Shen B (2019). Renyi distribution entropy analysis of short-term heart rate variability signals and its application in coronary artery disease detection. Front Physiol 10: 809. DOI: 10.3389/fphys.2019.00809.
Go to original source...
Go to PubMed...
- Shukla RS, Aggarwal Y (2018a). Nonlinear heart rate variability based artificial intelligence in lung cancer. J Appl Biomed 16: 145-155. DOI: 10.1016/j.jab.2017.12.002.
Go to original source...
- Shukla RS, Aggarwal Y (2018b). Time-domain heart rate variability-based computer-aided prognosis of lung cancer. Indian J Cancer 55: 61-65. DOI: 10.4103/ijc.IJC_395_17.
Go to original source...
Go to PubMed...
- Singh R, Arbaz M, Rai NK, Joshi R (2019). Diagnostic accuracy of composite autonomic symptom scale 31 (COMPASS-31) in early detection of autonomic dysfunction in type 2 diabetes mellitus. Diabetes Metab Syndr Obes 12: 1735-1742. DOI: 10.2147%2FDMSO.S214085.
Go to original source...
Go to PubMed...
- Singh RS, Gelmecha DJ, Sinha DK (2022). Expert system based detection and classification of coronary artery disease using ranking methods and nonlinear attributes. Multimed Tools Appl 81: 19723-19750. DOI: 10.1007/s11042-021-11528-1.
Go to original source...
- Sopic D, Aminifar A, Aminifar A, Atienza D (2018). Real-time event-driven classification technique for early detection and prevention of myocardial infarction on wearable systems. IEEE Trans Biomed Circuits Syst 12: 1-11. DOI: 10.1109/TBCAS.2018.2848477.
Go to original source...
Go to PubMed...
- Stein PK, Kleiger RE (1999). Insights from the study of heart rate variability. Annu Rev Med 50: 249-261. DOI: 10.1146/annurev.med.50.1.249.
Go to original source...
Go to PubMed...
- Sztajzel J (2004). Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 134: 514-522.
Go to PubMed...
- Takakura IT, Hoshi RA, Santos MA, Pivateli FC, Nobrega JH, Guedes DL, et al. (2017). Recurrence plots: a new tool for quantification of cardiac autonomic nervous system recovery after transplant. Braz J Cardiovas Surg 32: 245-252. DOI: 10.21470/1678-9741-2016-0035.
Go to original source...
Go to PubMed...
- Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al. (2018). Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med 94: 19-26. DOI: 10.1016/j.compbiomed.2017.12.023.
Go to original source...
Go to PubMed...
- Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA (2014). Kubios HRV - heart rate variability analysis software. Comput Methods Programs Biomed 113: 210-220. DOI: 10.1016/j.cmpb.2013.07.024.
Go to original source...
Go to PubMed...
- Tristani FE, Kamper DG, McDermott DJ, Peters BJ, Smith JJ (1977). Alterations of postural and valsalva responses in coronary heart disease. Am J Physiol 233: H694-699. DOI: 10.1152/ajpheart.1977.233.6.H694.
Go to original source...
Go to PubMed...
- Trivedi GY, Saboo B, Singh RB, Maheshwari A, Sharma K, Verma N (2019). Can decreased heart rate variability be a marker of autonomic dysfunction, metabolic syndrome and diabetes? J Diabetol 10: 48-56. DOI: 10.4103/jod.jod_17_18.
Go to original source...
- Verde L, De Pietro G (2019). A neural network approach to classify carotid disorders from Heart Rate Variability analysis. Comput Biol Med 109: 226-234. DOI: 10.1016/j.compbiomed.2019.04.036.
Go to original source...
Go to PubMed...
- Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R (2012). Heart rate variability today. Prog Cardiovasc Dis 55: 321-331. DOI: 10.1016/j.pcad.2012.09.001.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.